

www.astesj.com 78

The main characteristics of five distributed file systems required for big data: A comparative study

Akram Elomari*, Larbi Hassouni, Abderrahim Maizate

RITM-ESTC / CED-ENSEM, University Hassan II, ZIP Code 8012, Morocco

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 31 March, 2017
Accepted: 13 June, 2017
Online: 26 June, 2017

 These last years, the amount of data generated by information systems has exploded. It is
not only the quantities of information that are now estimated in Exabyte, but also the variety
of these data which is more and more structurally heterogeneous and the velocity of
generation of these data which can be compared in many cases to endless flows. Now days,
Big Data science offers many opportunities to analyze and explore these quantities of data.
Therefore, we can collect and parse data, make many distributed operations, aggregate
results, make reports and synthesis. To allow all these operations, Big Data Science relies
on the use of "Distributed File Systems (DFS)" technologies to store data more efficiently.
Distributed File Systems were designed to address a set of technological challenges like
consistency and availability of data, scalability of environments, competitive access to data
or even more the cost of their maintenance and extension. In this paper, we attempt to
highlight some of these systems. Some are proprietary such as Google GFS and IBM GPFS,
and others are open source such as HDFS, Blobseer and AFS. Our goal is to make a
comparative analysis of the main technological bricks that often form the backbone of any
DFS system.

Keywords:
Big Data
Data Storage
DFS
HDFS
GFS
AFS
GPFS
Blobseer
BLOB
Data Stripping
Tiered storage

1. Introduction

Todays, the amount of data generated during a single day may
exceed the amount of information contained in all printed materials
all over the world. This quantity far exceeds what scientists have
imagined there are just a few decades. Internet Data Center (IDC)
estimated that between 2005 and 2020, the digital universe will be
multiplied by a factor of 300, this means that we will pass from
130 Exabyte to 40,000 Exabyte, which is the equivalent of 40
billion gigabytes (more than 5,200 gigabytes for each man, woman
and child in 2020) [1].

Therefore, the variety and the complexity of this deluge of data,
which is often unstructured, are revolutionizing the methods of
data management and exploitation of the large quantity of
information they convey [2,3].

Traditional data processing technologies have rapidly reached
their limits and are being replaced by new systems which allow big

data storage and analysis, taking on consideration what is currently
known as the four V: Volume (to handle the huge amount of
generated data), Velocity (to store, analyze and retrieve huge
dataset as quickly as possible), Variety (to process mostly
unstructured data, from multiple sources), and Value (to ask the
right questions to generate maximum value) [4].

The typical schema of Big Data architecture (e.g. MapReduce)
requires partitioning and distributing the processing across as
many resources as possible. Otherwise many issues relative to the
quantity of processed data can emerge like:

• Big data are slow to move over any network,

• Scaling up vertically (more memory, more powerful
hardware) has limitations.

• A single hard drive cannot handle the size of big data.

• Failures in computing devices are inevitable

Move the “processing” into data instead of the opposite can
become an obligation rather than a choice. Cloud platforms for

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Akram Elomari, RITM-ESTC / CED-ENSEM,
University Hassan II, ZIP Code 8012, Morocco | Email: akramelomari@yahoo.fr

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com

https://dx.doi.org/10.25046/aj020411

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020411

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 79

example, seem to offer countless benefits to such architecture,
among the most important between those advantages is the
scalability of the infrastructure that is managed by a fully
outsourced service [5].

Distributed storage systems take also the same orientation.

Although the traditional systems such as centralized network-
based storage systems (client-server) or the traditional distributed
systems such as NFS, managed to meet the requirements of
performance, reliability and safety of the data until a certain limit,
they are no longer able to respond to the new requirements in terms
of volume of data, high performance, and evolution capacities.
And besides their constraints of cost, a variety of technical
constraints are also added, such as data replication, continuity of
services etc… [6,7].

 In this paper, we try to discuss a set of the main
characteristics of technologies used in the market and we think
they are the most relevant and representative of the state of the art
in the field of distributed storage. In section II, we start by
explaining what Distributed File System (DFS) is. In section III,
we discuss some architecture of some DFS systems while
presenting the strengths and weaknesses of each of them. In section
IV, we present the logic of storage as Blob. In section V, we
discuss the technique of data stripping. In section VI, we discuss
the issues of concurrency and some technologies used in this field.
In section VII we present the tiered storage. We conclude this
paper by a benchmark table of five major systems on the market:
Andrew File System (AFS), Google File System (GFS), Blobseer,
Hadoop Distributed File System (HDFS) and General Parallel File
System (GPFS). The comparison focuses on a set of characteristics
discussed and explained throughout this paper.

More specifically, our main objective in this paper is to
contribute to determine the main characteristics that a Distributed
File System must integrate to respond to the multiple requirements
of a BIG DATA ecosystem. This study will allow us to well target
the part on which we are going to conduct our research to improve
the performance of a DFS.

2. What is “Distributed File system (DFS)”

A distributed file system (DFS) is a system that allows multiple
users to access, through the network, a file structure residing on
one or more remote machines (File Servers) using a similar
semantics to that used to access the local file system. It is a client /
server architecture where data is distributed across multiple storage
spaces, often called nodes. These nodes consist of a single or a
small number of physical storage disks.

The nodes generally consist of basic equipment, configured to
just provide storage services. As such, the material can be
relatively inexpensive.

The disk of each machine may be divided into several
segments, and each segment is stored repeatedly (often three
times) on different storage spaces, each copy of each segment is a
replica.

As the material used is generally inexpensive and by large
quantities, failures become inevitable. However, these systems are
designed to be tolerant to failure by using the replication technique

which makes the loss of one node an event "of low emergency and
impact" as the data is always recoverable, often automatically,
without any performance degradation.

The architecture of a distributed storage system varies
depending on the technological choices driven by the use case.
Nevertheless, it must generally observe some basic rules, which
are required for the survival of such ecosystem and which can be
summarized in the following points [8]:

• Access transparency: The remote file systems are exposed
on the client machine like any local file system.

• Localization transparency: The client has no indication -by
the file name- about the location of the file space neither if
it is a local or remote space file.

• Concurrent access transparency: The file system state is the
same for all the clients. This means that if a process is
modifying a file, all other processes on the same system or
remote systems that access the files see the changes in a
consistent way.

• Failure Transparency: Client programs should not be
affected by any loss of any node or a server.

• Heterogeneity: The File service needs to be supported by
different hardware platforms and operating systems.

• Scalability: The file system should work in small
environments (one to a dozen machines) as well as in large
environments (hundreds or even tens of thousands of
systems).

• Replication transparency: To support scalability, files must
be replicated on multiple servers; transparently to clients
(the system is on charge to create and maintain a designed
number of replicas automatically).

• Migration transparency: any file movement in the system
for management purposes should be transparent to the
clients.

• Support fine-grained distribution of data: To optimize
performance, the individual objects need to be located near
the processes that use them.

• Tolerance for network partitioning: The file system should
be tolerant to the fact that the entire network or certain
segments of it may be unavailable during certain periods.

In this paper, we compare five distributed file systems: AFS,
GFS, Blobseer, HDFS and GPFS. The choice to compare only
those specific systems, despite of the fact that the market includes
dozens of technologies, is particularly led by two reasons:

1. Our main objective is to study by focusing on the main
features of the most Data File Systems required for a Big Data
context. It is technically difficult to study all systems in the market
in order to know their technical specifications, especially as lots of
them are proprietary and closed systems. Even more, the
techniques are similar in several cases and are comparable to those
of the five we compare in this paper. The best known and not
included in our paper because of that are: Amazon S3 File System,

http://www.astesj.com/

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 80

OCFS (Oracle Cluster File System), GFS2 (Red Hat), VMFS
(Virtual Machine File System by VMware).

2. These five systems allowed us to make a clear idea about the
state of the art of this domain, thanks to the following
particularities:

• AFS (Andrew File System) is a system that can be
considered as a bridge between conventional systems such
as NFS and advanced distributed storage systems. His big
advantage is that it is available on a wide range of
platforms: AIX, Mac OS X, Darwin, HP-UX, Irix, Solaris,
Linux, Microsoft Windows, FreeBSD, NetBSD and
OpenBSD.

• GFS (Google File System) is a proprietary system used
internally by Google, which is one of the leading
innovating companies. Google aims to manage huge
quantities of data because of its activities.

• Blobseer is an open source initiative, particularly driven by
research as it is maintained by INRIA Rennes. Blobseer
choices, especially in the area of concurrency, are very
interesting as discussed hereafter.

• HDFS (Hadoop Distributed File System), which is a
subproject of HADOOP, a very popular Big Data system,
is considered as a reference in this domain. It is therefore
interesting to review its mechanisms and compare them to
the other DFS systems.

• GPFS (General Parallel File System) is a system developed
by IBM, a global leader in the field of Big Data. IBM
commercializes this system as a product.

By choosing those five systems, we tried to make sure to have
an illustration of these specific initiatives:

• Open source initiatives (BlobSeer, AFS, HDFS),

• Academic initiatives (BlobSeer)

• Big Data leader’s initiatives (IBM GPFS, Google GFS)

• Business market initiatives (IBM GPS)

We think that considering these four initiatives can help to
make a clear idea about the main orientations in the market of
distributed storage today.

3. DFS architectures

In the following, we study the architecture of each of the five
systems in order to explore the mechanisms and architectural
choices of each of them and thus understand the reasons which
justify these choices.

3.1. Andrew File System (AFS) architecture

A standard system that supports some characteristics of this
kind of architecture is AFS.

AFS (or Open AFS currently) is a distributed file system
originally developed by Carnegie Mellon University (as part of the
Andrew Project. Originally named "Vice", AFS is named after

Andrew Carnegie and Andrew Mellon). It is supported and
developed as a product by Transarc Corporation (now IBM
Pittsburgh Labs). It offers client-server architecture for federated
file sharing and distribution of replicated read-only content [9].

AFS offers many improvements over traditional systems. In
particular, it provides the independence of the storage from
location, guarantees system scalability and transparent migration
capabilities. AFS can be deployed on a wide range of
heterogeneous systems, including UNIX, Linux, MacOS X and
Microsoft Windows.

Figure 1 : AFS Design

As shown in Figure 1, the distribution of processes in AFS can
be summarized as follows:

• A process called “Vice” is the backbone of the system; it is
composed by a set of dedicated file servers and a complex LAN.

• A process called “Venus” runs on each client workstation; it
mediates access to shared files. Venus gets the requested files from
the vice process and keep them in the local cache of the client.
Venus also emulates a “UNIX like” file system access semantic on
the client station. “Vice” and “Venus” processes work in the back
ground of the client workstation process, so the client sees a normal
UNIX file system [10].

To better manage the transfer of files between servers and
clients, AFS assumes the following hypothesis [11]:

• Concerned files remain unchanged for long periods;

• Those files will be updated only by their owners;

• A large local cache is enough to contain all the client files;

• Generally concerned files are of small size, less than 10
Kbytes;

• Read operations are more common than write operation;

• The sequential access is usually more common than
random access;

• Most of the files are used by a single user, their owner;

http://www.astesj.com/

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 81

• Once the file has been used, it will likely be used again in
the near future.

These assumptions led AFS to adopt a fairly simple caching
mechanism based on these two main elements:

• The whole content of directories and files are transferred
from the server to the client (in AFS-3 by pieces of 64
kilobytes)

• Caching whole file: when the file is transferred to the client,
it will be stored on the local client disk (client cache)

Using the client cache may actually be a good compromise to
improve system performances, but it will only be effective if the
assumptions that the AFS designers have adopted are respected.
Otherwise, this massive use of the cache may compromise the data
integrity.

3.2. Google File System (GFS) architecture

Another interesting approach is that adopted by GFS, which
does not use cache at all.

GFS is a distributed file system developed by Google for its
own applications. Google GFS system (GFS cluster) consists of a
single master and multiple Chunkservers (nodes) and can be
accessed by multiple clients, as shown in Figure 2 [12].

Each of these nodes is typically a Linux machine running a
server process at a user level. It is possible to run both a
Chunkserver and a client on the same machine if its resources
allow it.

Figure 2 : GFS Design

The files to be stored are divided into pieces of fixed size called
"chunks". Each "chunk" is identified by an immutable and unique
“Chunk Handle” of 64 bits, assigned by the Master at its creation.
The Chunkservers store chunks on local disks as Linux files, and
manage to read or write a chunk using her Chunk Handle
associated with a byte range.

The chunks are replicated on several Chunkservers. By default
three replicas are stored, although users can designate a different
number of replications if needed.

The "master" server maintains all metadata of the file system.
This includes the namespace, access control information, the
mapping from files to chunks and locations of existing chunks. It
also controls the operations of the entire system, such as the
selection and management of the master copy of a chunk (chunk
lease), garbage collection (orphan chunks) and the migration of
chunks between Chunkservers. The master communicates
periodically with each Chunkserver to give instructions and collect
its state.

The GFS client code uses the API of the file system. It
communicates with the master and Chunkservers to read or write
data. Clients interact with the master regarding transactions related
to metadata, but all communications relating to the data themselves
goes directly to Chunkservers.

Unlike AFS, neither the client nor the Chunkserver use a
dedicated cache. Caches, according to Google, offer little benefit
because most applications use large files or large work spaces
which are too big to be cached. Not using the cache can simplify
the work of the client and also the entire system by eliminating the
cache coherence issues. The only exception to this rule is the
metadata which can be cached on the client station. The
Chunkservers does not need to use cache because the chunks are
stored as local files and thus benefit from the "cache" of the Linux
buffer that "cache" frequently accessed data in memory.

GFS was able to manage the failure possibility related to the
cache coherence that can be noticed on AFS. But using a single
master in the architecture of GFS is a real challenge; its
involvement in read and write operations should absolutely be
controlled so that it does not become a bottleneck. Google has tried
to reduce the impact of this weak point by replicating the master
on multiple copies called "shadows". These replicas are a backup
of the master and better yet they can be accessed in read-only and
so allowing access even when the master is down.

Google measured performance on a GFS cluster consisting of
one master, two master replicas, 16 chunkservers, and 16 clients.
All the machines are configured with dual 1.4 GHz processors, 2
GB of memory, two 80 GB 5400 rpm disks, and a 100 Mbps full-
duplex Ethernet connection to an HP 2524 switch.

The test conditions was for 15 concurrent client accessing
simultaneously N distinct files to read or write 1 GB of data

Read Average throughput: 90 MB/s

Write Average throughput: 34 MB/s

3.3. Blobseer architecture

Blobseer is a project of KerData team, INRIA Rennes,
Brittany, France. The main features of Blobseer are:

• Storage of data in BLOBs,

http://www.astesj.com/

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 82

• Data segmentation,

• Management of distributed metadata

• Control of concurrency based on a versioning mechanism.

The data stored by Blobseer is wrapped in a level of abstraction
that is a long sequence of bytes called BLOB (Binary Large
Object) [13].

Blobseer has focused on the problems posed by the master in
GFS and HDFS, but also on competitive access to data.

The Blobseer system consists of distributed processes (Figure
3), which communicate through remote procedure calls (RPC). A
physical node can run one or more processes and can play several
roles at the same time.

Figure 1 : Blobseer Design

The bricks of Blobseer are:

• Data providers: The data providers physically store the
chunks. Each data provider is simply a local key-value
store, which supports accesses to a particular chunk given
a chunk ID. New data providers may dynamically join and
leave the system.

• Provider manager: The provider manager keeps
information about the available storage space and
schedules the placement of newly generated chunks. It
employs a configurable chunk distribution strategy to
maximize the data distribution benefits with respect to the
needs of the application. The default strategy implemented
in Blobseer simply assigns new chunks to available data
providers in a round-robin fashion.

• Metadata providers: The metadata providers physically
store the metadata that allow identifying the chunks that
make up a snapshot version of a particular BLOB. Blobseer
employs a distributed metadata management organized as

a Distributed Hash Table (DHT) to enhance concurrent
access to metadata.

• Version manager: The version manager is in charge of
assigning new snapshot version numbers to writers and to
unveil these new snapshots to readers.

• The version manager is the key component of Blobseer, the
only serialization point, but is designed to not involve in
actual metadata and data Input/output. This approach keeps
the version manager lightweight and minimizes
synchronization.

• Clients: Blobseer exposes a client interface to make
available its data-management service to high-level
applications. When linked to Blobseer’s client library,
application can perform the following operations:
CREATE a BLOB, READ, WRITE, and APPEND
contiguous ranges of bytes on a specific BLOB.

Unlike Google GFS, Blobseer does not centralize access to
metadata on a single machine, so that the risk of bottleneck
situation of this type of node is eliminated. Also, this feature
allows load balancing the workload across multiple nodes in
parallel.

Since each BLOB can be stored as fragments over a large
number of storage space providers, some additional metadata are
needed to map sequences of BLOB. Although these additional
metadata seem to be insignificant compared to the size of the data
itself, on a large scale it represents a significant overhead. In those
conditions, traditional approaches which centralize metadata
management reach their limits.

Therefore, Blobseer argues for a distributed metadata
management system, which brings several advantages:

• Scalability: A distributed metadata management system is
potentially more scalable and open to concurrent accesses,
This scalability can also cover the increase of the size of
metadata.

• Data availability: Since metadata can be reproduced and
distributed to multiple metadata providers, this avoids
having a single centralized metadata server which then
provides a single point of failure.

In addition, the implementation of the versioning mechanism
via the «version manager» improves significantly the processing
of concurrent access (as seen in Concurrent access paragraph).

A set of experiments was carried out on the Rennes cluster of
the Grid’5000 platform [14,15]. The used nodes are
interconnected through a 1 Gbps Ethernet network, each node
being equipped with at least 4 GB of memory. The BlobSeer
deployment consists of one version manager, one provider

http://www.astesj.com/

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 83

manager, one node for the namespace manager. A BlobSeer
chunk size of 32 MB was fixed, as previous evaluations of
BlobSeer have shown this value enables the system to sustain a
high-throughput for multiple concurrent data transfers. The test
concerns the writing and reading of 2 GB and the Average
throughput was measured:

Read Average throughput: 52 MB/s

Write Average throughput: 62 MB/s

The installation of a platform under Blobseer is of moderate
difficulty. The preparation of the packages and their deployment is
not very complicated but optimizations and tuning (snapshots,
versioning, and concurrent accesses) require several tests.

3.4. Hadoop Distributed File System (HDFS)

A standard system that supports some characteristics of this
kind of architecture is AFS. Hadoop Distributed File System
(HDFS) is a distributed file system component of the Hadoop
ecosystem. The Apache Hadoop software library is a framework
that allows distributing the processing of large data sets across
clusters of computers using simple programming models[16].

HDFS is designed to run on commodity hardware, it is highly
fault-tolerant and is designed to be deployed on low-cost
hardware. HDFS also provides high throughput access to
application data and is suitable for applications that have large
data sets. It relaxes a few POSIX requirements to enable
streaming access to file system data[17].

As shown in figure 4, HDFS stores file system metadata and
application data separately. Like other distributed file systems,
HDFS stores metadata on a dedicated server, called the
NameNode. Application data are stored on other servers called
DataNodes. All servers are fully connected and communicate with
each other using TCP-based protocols. The DataNodes in HDFS
do not use data protection mechanisms such as RAID to make the
data durable. Instead of that, the file content is replicated on
multiple DataNodes for reliability. While ensuring data durability,
this strategy has the added advantage that data transfer bandwidth
is multiplied, and there are more opportunities for locating
computation near the needed data [18].

HDFS is designed to reliably store very large files across
machines in a large cluster. It stores each file as a sequence of
blocks; which are the same size except the last one. The blocks of
a file are replicated for fault tolerance. Files in HDFS are write-
once and have strictly one writer at any time [19].

Figure 4: HDFS Design

An HDFS client wanting to read a file first contacts the
NameNode for the locations of data blocks comprising the file and
then reads block contents from the DataNode closest to the client.
When writing data, the client requests the NameNode to nominate
a suite of three DataNodes to host the block replicas. The client
then writes data to the DataNodes in a pipeline fashion. The
current design has a single NameNode for each cluster. The
cluster can have thousands of DataNodes and tens of thousands of
HDFS clients per cluster, as each DataNode may execute multiple
application tasks concurrently.

Since the NameNode is unique in the cluster, saving a
transaction to disk becomes a bottleneck for all other threads
which have to wait until the synchronous operations initiated by
one of them are complete [21]. In order to optimize this process
the NameNode batches multiple transactions initiated by different
clients. When one of the NameNodes threads initiates a flush-and-
sync operation, all transactions batched at that time are committed
together. Remaining threads only need to check that their
transactions have been saved and do not need to initiate a flush-
and-sync operation.

Regarding the performance, a basic test was performed on a
test cluster composed by 8-nodes. The first 5 nodes of this Hadoop
cluster provided both computation and storage resources (as Data
Node servers). One node served as Job Tracker (Resource-
Manager) and one node served as NameNode storage manager.
Each node is running at 3.10 GHz CPU, 4GB RAM and a gigabit
Ethernet. All nodes used Hadoop framework 2.4.0.

The test concerns the writing and reading of 10 GB of data and
the average i/o rate was measured by TestDfsIO tool

“Write” Average i/o rate = 65 mb/s

“Read” Average i/o rate = 75 mb/s

http://www.astesj.com/

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 84

The HDFS system remains simple enough to set up and
manage, to add or to delete a node it needs the preparation of the
post concerned and the change of some configuration files. Web
interfaces make it possible to easily monitor the general condition
of the nodes and even the distribution of the storage or the size of
the chunks used.

Recompile the code on a particular machine can be more
complicated but remains relatively simple for a system
administrator.

3.5. General Parallel File System (GPFS)

A standard system that supports some characteristics of this
kind of architecture is AFS. The General Parallel File System
(GPFS) is a cluster developed by IBM which provides concurrent
access to a single or set of file systems from multiple Storage Area
Network (SAN) or network attached nodes [22].

GPFS is highly scalable and enables very high performances
and availability thanks to a variety of features like data replication,
policy based storage management, and multi-site operations.
GPFS cluster can be deployed under AIX (Advanced IBM Unix),
Linux or Windows server nodes. It can also be deployed on a mix
of some or all those operating systems. In addition, multiple GPFS
clusters can share data locally or across wide area network (WAN)
connections [23].

Figure 5: GPFS Design

GPFS uses the Network Shared Disk (NSD) protocol over any
TCP/IP capable network fabric to transfer data to the client file
system.

On the other side, GPFS server architecture is based on four
modules as illustrated in Figure 5, which manage the shared disks

System resource controller (src): The main purpose of the
System Resource Controller is to give to the system manager or a
developer a set of commands and subroutines by which he can
control and interact with the subsystems of the GPFS cluster.

GPFS daemon (mmfsd): The GPFS daemon is charged of all I/O
and buffers for GPFS, this include all read/write synchronous
/asynchronous operations. To grant data consistency of the system,
the daemon uses a token management system. On the other hand,
the Daemon manages multi threads to ensure the priority to some
critical processes and protect the whole system from lagging
because of some intensive routines.

The daemons running on all the nodes of one cluster keep
communicating with each other to insure that any configuration
changes, recovery or parallel updates of the same data structures
is shared between all of them.

RSCT daemons: GPFS uses Two RSCT daemons:

- The Group Service RSCT daemon (hagsd) ensures a distributed
coordination and synchronization with the other subsystems.

- The Topology Service RSCT daemon (hatsd) insures providing
other subsystems with network adapter status, node connectivity
information, and a reliable messaging service.

Linux Operating system : Under Linux, GPFS need to run two
modules:

- Portability layer module (mmfslinux): This module enables
communication between Linux Kernel and GPFS kernel, based on
hardware platform particularity and Linux distribution
specifications.

- Kernel extension (mmfs): which provides mechanisms to access
a file system where data is physically stored from the client
operating system transparently. In fact, GPFS appear to the client
like any other local file system. When any application makes a
call to any file system, this call is transmitted by the client
Operating system into GPFS kernel extension. The kernel
extension can respond to any file system call, by using the local
resources if exists, or make a request to GPFS daemon if not.

GPFS have many specific features that make it very scalable
and efficient:

- A GPFS cluster can integrate and optimize the use of different
disk drives with different performances;

- GPFS use data striping across disks therefore the spreading of
any processing over the cluster is possible;

- Metadata management is optimized to avoid the unnecessarily
access to the server;

http://www.astesj.com/

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 85

- GPFS uses caches on the client side to increase throughput of
random reads;

- GPFS allows access to files from multiple programs on read and
write mode;

- GPFS improves query languages such as Pig and Jaql by
providing sequential access that enables fast sorts.

On the other hand, GPFS eliminates the risk of a single point
of failure because the architecture is based on the following
attributes:

- Distributed metadata;

- Replication of both metadata and data;

- Minimum number of nodes (quorum);

- The recovery and reassignment of failed node is automatic;

- GPFS provides a fully POSIX semantic;

- Workload isolation;

- Enhanced Security thanks to a native encryption, stronger
cryptographic keys and more robust algorithms (NIST SP800-
131a);

- Provides cluster-to-cluster replication over a wide area network.

All those features make GPFS a very scalable and high available
system, but it does not seem to be designed for low cost hardware
platforms unlike the GFS or Blobseer for example. Nevertheless,
it remains proposing interesting mechanisms for data caching or
parallel access to files.

4. Data Storage as Binary Large Object (blob)

The architecture of a distributed storage system can predict
and improve the accessibility of files on storage spaces. It also
enables the system design scalability and resilience to the risk of
failures that amplify with the quality of equipment in use.
However, among the main criteria that a distributed storage
system must take into consideration is how files are stored on the
disks.

In fact, we are talking about applications that process large
quantities of data, distributed on a very large scale. To facilitate
the management of data in such conditions, one approach is to
organize these data as objects of considerable size. Such objects,
called Binary Large Objects (BLOBs), consist of long sequences
of bytes representing unstructured data and can provide the basis
for a transparent data sharing of large-scale. A BLOB can usually
reach sizes of up to 1 Tera Byte.

Using BLOBs offers two main advantages:

• The Scalability: Applications which deal with data sets that
grow rapidly to easily reach around terabytes or more, can

evolve more easily. In fact, maintaining a small set of huge
BLOBs including billions of small items in the order of a few
Kbytes is much easier than directly managing billions of small
files of a few kilobytes. In this case, the simple mapping
between the application data and file names can be a big
problem compared to the case where the data are stored in the
same BLOB and that only their offsets must be maintained.

• The Transparency: A data management system based on shared
BLOBs, uniquely identifiable through ids, relieves application
developers of the burden of codifying explicitly management
and transfer of their locations. The system thus offers an
intermediate layer that masks the complicity of access to data
wherever it is stored physically [24].

5. Data striping

Data striping is a well-known technique for increasing the data
access performance. Each stored object is divided into small
pieces that are distributed across multiple machines over the
storage system. Thus, requests for access to data may be
distributed over multiple machines in parallel, allowing achieving
high performances. Two factors must be considered in order to
maximize the benefits of access to the distributed data:

• A configurable Strategy of distribution of chunks: Distribution
strategy specifies where to store the chunks to achieve a
predefined goal. For example, load balancing is one of the
goals that such strategy can allow. By storing the chunks on
different machines, we can parallelize the concurrent access to
the same object and therefore improve performances. More
complex scenarios are conceivable, for example optimizing
access by geographical location or by the characteristics of
storage machines (place the most requested chunks on the most
powerful machines ...)[25,26]

• Dynamic configuration of the size of the chunks: The
performance of distributed data processing is highly dependent
on how the calculation is distributed and planned on the
system. Indeed, if the chunks size is too small, applications
must then retrieve the data to be processed from several chunks
because of increasing probability of that the size of these data
requires a high number of chunks. On the other hand, the use
of too large chunks will complicate simultaneous access to data
because of the increasing probability that two applications
require access to two different data but both stored on the same
chunk. A compromise will have to be made regarding the size
of chunks to enable a balance between performance and
efficiency of such system.

The majority of systems that use this type of architecture, such
as Google GFS, HDFS or Blobseer use a chunk size of 64 MB
that seems to be the most optimized for those two criteria.

http://www.astesj.com/

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 86

6. Concurrency

Processing concurrency is very dependent on the nature of the
desired data processing and the nature of data changes. It’s clear
that the Haystack system which manages Facebook pictures that
do not changes during their lives [27], will be different from
Google GFS or IBM GPFS which are intended to manage more
dynamic data.

The “lock” is a known method to solve this type of problems,
which is used by many DFS including GPFS.

The General Parallel File System (GPFS) propose a parallel
access mechanism using block level locking based on a very
sophisticated scalable token management system. This
mechanism provides data consistency while allowing concurrent
access to the files by multiple application nodes. A token server
manages the lock acquisition and the lock revocation, and
between these too operations only the system that has the lock can
modify the file.

It is clear that in case of very large file, the lock operation can
cause a considerable loss of time. Fortunately, IBM has developed
a sophisticated mechanism that allows locking byte ranges instead
of whole files/blocks (Byte Range Locking) [28]

GFS meanwhile, offers a relaxed consistency model that
supports Google highly distributed applications, but is still
relatively simple to implement. Practically all Google
applications mutate files by appending rather than overwriting.
The mutation operations on GFS are atomic. They are treated
exclusively by the "master". The namespace locks guarantee its
atomicity and accuracy. The status of a file region (a region of
storage space which contains a part or the entire file) after a data
transfer depends on the type of mutation, the success or failure of
the mutation, and the existence or not of simultaneous mutations.

Table 1 summarizes the states of a file region after a transfer.
A file region is "consistent" if all clients see the same data
regardless of the replicas they are reading. A region is called
"defined" after a change if it is consistent and clients will see all
of what this mutation wrote.

When a mutation succeeds without simultaneous write
interference, the affected region is defined (and coherent by
consequence): All customers will see all what the mutation wrote.

Successful simultaneous mutations leave the region undefined
but consistent: all clients see the same data, but the data may not
reflect what any one mutation wrote, it will be composed of mixed
fragments from multiple mutations. Failed mutation makes the
region inconsistent (hence also undefined): different clients may
see different data at different times. GFS makes the difference
subsequently between the defined regions and undefined regions.

Table 1 : File region state after mutation

 Write Record Append

Serial success Defined Defined interspersed with
inconsistent

Concurrent successes Consistent but
undefined

Failure Inconsistent

On GFS, Data mutations may be a record write or a record
append. A "record append" in GFS is different from a standard
"append" in which the customer writes at the end of file. Indeed,
a "record append" in GFS consists of writing a record in a block
at least once even in the case of competitive changes, but at an
offset that GFS itself chooses. The offset is returned to the client
and marks the beginning of a defined region that contains the
record.

After a sequence of successful mutations, the mutated region
of the file is guaranteed to be "defined" and contains data written
by the last mutation. GFS achieves this by applying chunk
mutations in the same order on all replicas, but also using chunks
version numbers to detect any replica that has become obsolete
because it missed mutations. Obsolete replicas will never be used
and will be destroyed by a garbage collector at the first
opportunity.

Blobseer developed a more sophisticated technique, which
theoretically gives much better results. The basic needs can be
defined as following: the BLOB access interface must allow users
to create a BLOB, read / write a sequence of bytes (of a known
size starting from an offset) from or to the BLOB, and add a byte
sequence of a certain size at the end of the BLOB.

However, given the requirements regarding competitive
access to data, Blobseer developers claim that BLOB access
interface should be able to:
- Manage Asynchronous operations;
- Have access to previous versions of the BLOB;
- Ensure the atomic generation of snapshots whenever the BLOB
is updated.

Each of these points is covered by the following capabilities:

1. The explicit versioning: Applications that process large
quantities of data must often manage the acquisition and
processing of data in parallel. Versioning can be an effective
solution to this situation. While the acquisition of data can lead to
the generation of new snapshot of the BLOB, the data processing
can continue quietly on its own snapshot that is immutable and
therefore never leads to potential inconsistencies. This can be
achieved by exposing data access interface based on versioning,
which allows the user to directly express these workflow
templates, without the need to explicitly manage synchronization.

http://www.astesj.com/

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 87

2. Atomic snapshots generation: Snapshots can be used to
protect the file system contents against any error by preserving at
a point in time a version of the file system or a sub-tree of a file
system called a fileset. In Blobseer, a snapshot of the blob is
generated atomically each time the Blob is updated. Readers
should not be able to access transiently inconsistent snapshots that
are being generated. This greatly simplifies development of
applications because it reduces the need for complex
synchronization schemes at the application level.

The "snapshot" approach using versioning that Blobseer
brings is an effective way to meet the main objectives of
maximizing competitive access. Data and metadata are always
created, but never overwritten. This will parallelize concurrency
as much as possible, in terms of data and also metadata, in all
possible combinations: simultaneous reads, simultaneous writes
and concurrent reads and writes [29].

The disadvantage of such a mechanism based on snapshots, is
that it can easily explode the storage space required to maintain
the system. However, although each write or append generates a
new version of the blob snapshot, only the differential updates
from previous versions are physically stored. This eliminates
unnecessary duplication of data and metadata and greatly
optimizes storage space.

7. Tiered storage

Despite the high scalability of DFSs existing on the market
and their ability to manage a very large number of nodes, they still
dealing with managed nodes in a similar way.

 Indeed, a node network in a DFS can technically be composed
of several types of machines with heterogeneous storage units,
managing these nodes similarly would often prevent DFS from
taking advantage of the most powerful storage spaces or otherwise
imposing many constraints on rudimentary storage spaces.
A simple way to avoid this situation is to equip the DFS with a
single type of node, therefore the management will be linear and
the performance will not be impacted by the identity of the storage
node. In this case the DFS is indifferent to the I/O characteristics
of each node and will have to keep the same category of devices
even if the technology is outdated (the case of the HDD disks),
otherwise pro-actively opt for advanced technologies (the SSD for
example) and undergo costs of maintenance and evolution.

Another way to address this problem is to allow DFSs to
manage different device categories while equipping them with
technology that enables them to intelligently manage storage
policies on heterogeneous storage resources.

The "tiered storage" allows to create groups of "devices" (tiers)
that have the same I / O characteristics and to manage the
distribution of the storage on these groups according to the degree
of solicitation of data.

Figure 6: Tiered storage concept

Hadoop, since version 2.3.0, had introduced a major evolution
that allowed the management of heterogeneous storage spaces; by
using this option combined with a storage policy management
API, the user can specify on which storage type this data should
be stored.

Other works on Hadoop has made it possible to automate the
choice of the storage space for specific data, for example based on
the temperature of the data (hot data for the very demanded and
cold data for those less solicited for example)[30] or even improve
the architecture of HDFS as has been proposed by hatS [31] which
logically groups all storage devices of the same type across the
nodes into an associated “tier.” Or yet by TS-Hadoop [32] which
utilizes tiered storage infrastructure, besides HDFS, to improve
map reduce operations. TS-Hadoop automatically distinguish hot
and cold data based on current workload, and move hot data into
a specific shared disk (hcache) and cold data into HDFS
respectively, so that the hot data in HCache could be processed
efficiently.

The same concept is assured by other DFS like GPFS by
"Spectrum Scale ILM toolkit" which allows the management of
groups of storage spaces but also to automate the management of
the files within these spaces. It allows to create hierarchized and
optimized storage sets by grouping, in separate storage pools,
discs that have close performances, similar budget characteristics
or even hosted in the same physical location. Thereafter, a storage
strategy tells the system what rules should be followed when
storing each file.

Figure 7: GPFS Storage spools as Tiered storage

http://www.astesj.com/

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 88

The performance of a tired-storage compared to a traditional
DFS can be very remarkable, allowing improvements up to 36%
on the reading times on hatS for example. However, an automatic
analysis must be associated to the architecture to allow automatic
determination of the best storage location. This analysis can be
done at the time of data storing via a specific algorithm based on
the information of storage areas, or by analyzing the situation of
the response time and redistribute data according to the results of
the analysis (log analysis for example)

8. DFS Benchmark

As we have detailed in this article, often there is no better or
worse methods for technical or technological choices to be
adopted to make the best of a DFS, but rather compromises that
have to be managed to meet very specific objectives.

In Table 3, we compare the implementation of some key
technologies that meet the requirements listed in the paragraph
"What is a Distributed File system", and that can be summarized
as follows:

• Data Storage Scalability: the system can be scalable
natively on the data storage capability.

• Meta Data Storage Scalability: the system can be scalable
natively on the Meta data storage capability.

• Fault tolerance: the system is fault tolerant transparently to
the user.

• Data Access Concurrency: how the system manages
competitive access to data.

• Meta Data Access Concurrency: how the system manages
competitive access to Meta data.

• Snapshots: does the system keep snapshots of files to
recover from errors or crashes.

• Versioning: does the system records versions of changed
files and data.

• Data Striping: does the system uses data striping over his
nodes.

• Storage as Blobs: does the system store data as blobs.

• Data replication: does the system automatically replicate
data.

• Supported OS: which operating systems can be used by the
DFS.

• Dedicated cash: does the system support the using of
dedicated cash.

Analysis of the results of Table 3 leads to the following
conclusions:
- The five systems are expandable in data storage. Thus they cover
one of the principal issues that lead to the emergence of Distribute
File System: the capacity to extend the system to absorb more
volumes, transparently to the user.

- Only Blobseer and GPFS offers the extensibility of metadata
management to overcome the bottleneck problem of the master
machine which manage the access to metadata; while AFS
architecture does not provide metadata supporting to access to the
file, GFS and HDFS has not considered necessary to extend the
metadata management feature. Google considers that having a
single master vastly simplifies the design of GFS and enables the
master to make sophisticated chunk placement and replication
decisions using global knowledge.

- Except AFS, all studied systems are natively tolerant to crash,
relying essentially on multiple replications of data.
- The competitive access to the data and metadata is an important
point in all big data systems. All systems use locks to enable
exclusive data mutation. To minimize the slowing effect caused
by locks on the whole file, GPFS manage locks on specific areas
of the file (Byte range locks). Nevertheless, the most innovative
method is the use of versioning and snapshots by Blobseer to
allow simultaneous changes without exclusivity.

- Except AFS, all systems are using the striping of data. As
discussed earlier, this technique provides a higher input/output
performance by "striping" blocks of data from individual files
over multiple disks, and reading and writing these blocks in
parallel way.

- Blobseer seems to be the only one among the systems studied
that implements the storage on blobs technique, despite the
apparent advantages of such technique.

- To allow a better scalability, a DFS system must support as much
operating systems as possible. However, despite that, the studied
technologies remain discorded on this point. While AFS, HDFS
and GPFS supports multiple platforms, GFS and Blobseer run
exclusively on Linux. This can be partly explained by the
popularity of AFS, HDFS and GPFS which are used in many
professional contexts.

- Use of dedicated cache is also a point of discord between studied
systems, GFS and Blobseer are categorical and consider that the
cache has no real benefits, but rather causes many consistency
problems. AFS and GPFS use dedicated cache on both client
computers and servers. HDFS seems to use dedicated cache only
at client level.

http://www.astesj.com/

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 89

Table 3: Comparative table of most important characteristics of distributed file storage

 Data
Scalability

Meta Data
Scalability Fault tolerance Data access

Concurrency

Meta Data
access
Concurrency

Snapshots Versioning Data Striping Storage as
Blobs Supported OS Dedicated cache

HDFS YES NO
Block Replication.
Secondary
Namenode.

Files have strictly
one writer at any
time

NO YES NO
YES (Data
blocks of 64
MB)

NO

Linux and
Windows are the
supported , but
BSD, Mac OS/X,
and Open Solaris
are known to work

YES (Client)

Blobseer YES YES
Chunk Replication
Meta data
replication

YES YES YES YES 64 MB Chunks YES LINUX NO

GFS by
Google YES NO

Fast Recovery.
Chunk Replication.
Master Replication.

Optimized for
concurrent
"appends"

Master
shadows on
read only

YES YES 64 MB Chunks NO LINUX NO

AFS
(OPEN FS) YES NO NO Byte-range file

locking NO NO NO NO NO

AIX, Mac OS X,
Darwin, HP-UX,
Irix, Solaris,
Linux, Microsoft
Windows,
FreeBSD,
NetBSD and
OpenBSD

YES

GPFS IBM YES YES

Clustering features.
Synchronous and
asynchronous data
replication.

Distributed
byte range locking

Centralized
management YES unknown YES NO

AIX, Red Hat,
SUSE , Debian
Linux
distributions,
Windows Server
2008

YES by AFM
technology

http://www.astesj.com/

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 90

9. Conclusion

In this paper, we made a comparative study of the main
characteristics of five distributed file storage systems. Firstly, we
introduced the general objective of this kind of systems and
reviewed related technologies, such as architectures, Blob use,
data striping and concurrent access. At the end, we provide a table
(Table 3) whose each column's header is a main characteristic of
a DFS system and each line's header corresponds to one of the five
DFS systems compared. At the intersection of each row and
column, we specify whether the characteristic is implemented by
the system as well as the particularities of the implementation.

It is clear from this analysis that the major common concern
of such systems is scalability. Those systems are designed to
manage the amount of data that extends day after day. Centralized
storage systems have many limitations and their maintenance is
complicated and raises major concerns about cost. A DFS should
therefore be extended with a minimum cost and effort.

Also data availability and fault tolerance remain among the
major concerns of DFS. Many systems tend to use non expensive
hardware for storage. Such condition will expose those systems to
frequent or usual breakdowns. This issue is remedied by
replication mechanisms, versioning, snapshots… that aim
restoring the system state, often automatically, after a fault or total
loss of any nodes.

To these mechanisms, data striping and lock mechanisms are
added to manage and optimize concurrent access to the data.
Systems that manage large files in large quantities need to have a
developed parallel access. Locking an entire file to change a part
of it can halt the access to this file for an indeterminate duration.
It was therefore important to adopt solutions that will just lock the
byte range concerned by the change, or even like what Blobseer
implements, continue editing in a new version without blocking
other clients who continue to use the current version transparently.

Working on multiples operating systems can bring big
advantages to DFS. AFS is the one offering the largest variety of
operating systems that can support its implementation, but as seen
above AFS have some serious limitations. In perspective, we can
think to improve AFS with some mechanisms of data striping and
concurrency management that we think the most important
features to add to this DFS.

Furthermore, saving data as BLOB combined with a
mechanism of data striping and cache, which is already proposed
by AFS, can ameliorate considerably the efficiency of such
system and allow it to manage larger files.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] John Gantz and David Reinsel, “THE DIGITAL UNIVERSE IN 2020: Big
Data, Bigger Digital Shadows, and Biggest Growth in the Far East.” Tech.
rep. Internet Data Center(IDC), 2012.

[2] Weili Kou, Xuejing Yang, Changxian Liang, Changbo Xie ,Shu Gan,”HDFS
enabled storage and management of remote sensing data” 2nd IEEE

International Conference on Computer and Communications (ICCC),
Chengdu, China, 2016. https://doi.org/10.1109/CompComm.2016.7924669

[3] D. Chen , Y.Chen, B.N. Brownlow, “Real-Time or Near Real-Time Persisting
Daily Healthcare Data Into HDFS and ElasticSearch Index Inside a Big Data
Platform” IEEE Transactions on Industrial Informatics, 2017.
https://doi.org/10.1109/TII.2016.2645606

[4] Yanish Pradhananga, Shridevi Karande, Chandraprakash Karande, “High
Performance Analytics of Bigdata with Dynamic and Optimized Hadoop
Cluster” International Conference on Advanced Communication Control and
Computing Technologies (ICACCCT),2016.
https://doi.org/10.1109/ICACCCT.2016.7831733

[5] Richard J Self, “Governance Strategies for the Cloud, Big Data and other
Technologies in Education” IEEE/ACM 7th International Conference on
Utility and Cloud Computing, 2014. https://doi.org/10.1109/UCC.2014.101

[6] Purva Grover, Rahul Johari, “BCD: BigData,Cloud Computing and
Distributed Computing” Global Conference on Communication
Technologies(GCCT), 2015. https://doi.org/10.1109/GCCT.2015.7342768

[7] T. L. S. R. Krishna, T. Ragunathan and S. K. Battula, “Improving performance
of a distributed file system using a speculative semantics-based algorithm”
Tsinghua Science and Technology, vol. 20, no. 6, pp. 583-593, 2015.
https://doi.org/10.1109/TST.2015.7349930

[8] Paul Krzyzanowski, “Distributed File Systems Design” Rutgers University,
2012.

[9] R. Tobbicke, "Distributed file systems: focus on Andrew File System /
Distributed File Service (AFS/DFS)," Proceedings Thirteenth IEEE
Symposium on Mass Storage Systems. Toward Distributed Storage and Data
Management Systems, Annecy, 1994.
https://doi.org/10.1109/MASS.1994.373021

[10] Monali Mavani, “Comparative Analysis of Andrew Files System and Hadoop
Distributed File System” LNSE (Vol.1(2): 122-125 , 2013.

[11] Stefan Leue, “Distributed Systems” tele Research Group for Computer
Networks and Telecommunications Albert-Ludwigs-University of Freiburg,
2001.

[12] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google*, “The
Google File System” SOSP '03 Proceedings of the nineteenth ACM
symposium on Operating systems principles,2003.

[13] T. L. S. R. Krishna and T. Ragunathan, "A novel technique for improving the
performance of read operations in BlobSeer Distributed File System," 2014
Conference on IT in Business, Industry and Government (CSIBIG), Indore,
2014. https://doi.org/10.1109/CSIBIG.2014.7056982

[14] D.Santhoshi, V.Teja, T.Tejaswini Singh, K.Shyam Prasad, “Supplanting
HDFS with BSFS” International Journal of Advanced Research in Computer
Science Volume 5, No. 4, 2014.

[15] Alexandra Carpen-Amarie, “BlobSeer as a data-storage facility for clouds
:self-Adaptation, integration, evaluation.” Ph.D Thesis ENS CACHAN –
BRETAGNE,2011.

[16] M. Sogodekar, S. Pandey, I. Tupkari and A. Manekar, "Big data analytics:
hadoop and tools," 2016 IEEE Bombay Section Symposium (IBSS),
Baramati, India, 2016. https://doi.org/10.1109/IBSS.2016.7940204

[17] K. Qu, L. Meng and Y. Yang, ”A dynamic replica strategy based on Markov
model for hadoop distributed file system (HDFS)” 4th International
Conference on Cloud Computing and Intelligence Systems (CCIS), Beijing,
2016. https://doi.org/10.1109/CCIS.2016.7790280

[18] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler
Yahoo!, “The Hadoop Distributed File System” MSST '10 IEEE 26th
Symposium on Mass Storage Systems and Technologies, 2010.
https://doi.org/10.1109/MSST.2010.5496972

[19] C. B. VishnuVardhan and P. K. Baruah, "Improving the performance of
heterogeneous Hadoop cluster," 2016 Fourth International Conference on
Parallel, Distributed and Grid Computing (PDGC), Waknaghat, 2016.
https://doi.org/10.1109/PDGC.2016.7913150

[20] Dhruba Borthakur, “HDFS Architecture Guide” The Apache Software
Foundation, 2008.

http://www.astesj.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yi%20Chen.QT.&newsearch=true

A. Elomari et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 78-91 (2017)

www.astesj.com 91

[21] Passent M ElKafrawy, Amr M Sauber, Mohamed M Hafez, “HDFSX: Big
data Distributed File System with small files support.” 12th International
Computer Engineering Conference (ICENCO), 2016.
https://doi.org/10.1109/ICENCO.2016.7856457

[22] A. C. Azagury , R. Haas, D. Hildebrand, “GPFS-based implementation of a
hyperconverged system for software defined infrastructure” IBM Journal of
Research and Development, vol. 58, no. 2/3, pp. 6:1-6:12, 2014.
https://doi.org/10.1147/JRD.2014.2303321

[23] Kuo-Yang Cheng, Hui-Shan Chen and Chia-Yen Liu, "Performance
evaluation of Gfarm and GPFS-WAN in Data Grid environment," IET
International Conference on Frontier Computing. Theory, Technologies and
Applications, Taichung, 2010. https://doi.org/10.1049/cp.2010.0530

[24] Bogdan Nicolae, Gabriel Antoniu, Luc Boug_e, Diana Moise, Alexandra,
Carpen-Amarie, “BlobSeer: Next Generation Data Management for Large
Scale Infrastructures” Journal of Parallel and Distributed Computing,
Elsevier, 2011. http://doi.org/10.1016/j.jpdc.2010.08.004

[25] Mariam Malak Fahmy,Iman Elghandour, Magdy Nagi, “CoS-HDFS: Co-
Locating Geo-Distributed Spatial Data in Hadoop Distributed File System”
IEEE/ACM 3rd International Conference on Big Data Computing
Applications and Technologies (BDCAT), 2016 .
http://doi.org/10.1145/3006299.3006314

[26] Cong Liao, Anna Squicciarini, Dan Lin. LAST-HDFS, “Location-Aware
Storage Technique for Hadoop Distributed File System.” IEEE 9th
International Conference on Cloud Computing. 2016.
https://doi.org/10.1109/CLOUD.2016.0093

[27] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, Peter Vajgel,
Facebook Inc,, ”Finding a needle in Haystack: Facebook’s photo storage”
OSDI'10 Proceedings of the 9th USENIX conference on Operating systems
design and implementation, 2010.

[28] Scott Fadden, “An Introduction to GPFS Version 3.5 Technologies that
enable the management of big data” IBM Corporation, 2012.

[29] Bogdan Nicolae,Diana Moise, Gabriel Antoniu,Luc Boug´e, Matthieu Dorier,
“BlobSeer: Bringing High Throughput under Heavy Concurrency to Hadoop
Map-Reduce Applications” Research Report RR-7140, INRIA , 2010.
https://doi.org/10.1109/IPDPS.2010.5470433

[30] Rohith Subramanyam, “HDFS Heterogeneous Storage Resource
Management based on Data Temperature” International Conference on Cloud
and Autonomic Computing, 2015. https://doi.org/10.1109/ICCAC.2015.33

[31] Krish K.R., Ali Anwar, Ali R. Butt. “hatS, A Heterogeneity-Aware Tiered
Storage for Hadoop” 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2014. https://doi.org/10.1109/CCGrid.2014.51

[32] Zhanye Wang, Jing Li, Tao Xu, Yu Gu, Dongsheng Wang. TS-Hadoop,
“Handling Access Skew in MapReduce by Using Tiered Storage
Infrastructure” International Conference on Information and Communication
Technology Convergence, 2014.
https://doi.org/10.1109/ICTC.2014.6983331

http://www.astesj.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Haas.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.D.%20Hildebrand.QT.&newsearch=true

	2. What is “Distributed File system (DFS)”
	3. DFS architectures
	3.1. Andrew File System (AFS) architecture
	3.2. Google File System (GFS) architecture
	3.3. Blobseer architecture
	3.4. Hadoop Distributed File System (HDFS)
	3.5. General Parallel File System (GPFS)

	4. Data Storage as Binary Large Object (blob)
	5. Data striping
	6. Concurrency
	7. Tiered storage
	8. DFS Benchmark
	9. Conclusion
	Conflict of Interest
	References

